

Extraction Properties of ^{99m}Tc from irradiated High-density MoO₃ Pellets Solution

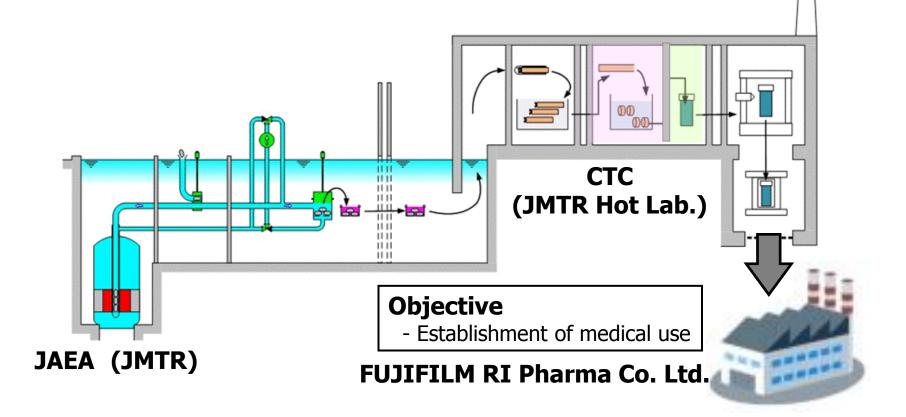
<u>Akira SHIBATA¹</u>, Takuya ISHIDA¹, Takayuki SHIINA², Masaaki KOBAYASHI³, Masakazu TANASE², Yoshiaki KATO¹, Akihiro KIMURA¹, Akio OHTA², Asaki YAMAMOTO³, Yasumasa MORIKAWA³, Kaori NISHIKATA¹, Nobuhiro TAKEUCHI² and Kunihiko TSUCHIYA¹

1 : Japan Atomic Energy Agency, 4002 Narita, Oarai,Higashiibaraki, Ibaraki 311-1393, Japan 2 : Chiyoda Technol Corporation, 3681 Narita, Oarai, Higashiibaraki, Ibaraki 311-1313, Japan 3 : FUJIFILM RI Pharma Co. Ltd., 453-1 Shimo-okura, Matsuo, Sammu, Chiba 289-1592, Japan

- 1. Introduction and Background
- 2. Experimental
 - 2.1 Experimental Flow and Device
 - 2.3 Hot Tests Irradiation Test
- 3. Cold test
 - 3.1 Preparation and Characterization of MoO₃ Pellets
 - 3.2 Extracted Test with Rhenium instead of ^{99m}Tc
 - 3.3 Qualification Test of Re Solution
- 4. Hot Test (Preliminary Irradiation Test)
- 5. Conclusion

 99m Tc, a daughter nuclide of 99 Mo, is commonly used as a radiopharmaceutical. In case of Japan, all of 99 Mo are imported from foreign countries. R&D on 99 Mo domestic production has been performed under the cooperation programs. 99 Mo production by (n, γ) method was adopted from viewpoints of nuclear proliferation resistance and waste management.

In this study, experiments of ⁹⁹Mo /^{99m}Tc production were performed to enhance recovery yields of ^{99m}Tc. Cold tests with Re were performed to optimize experimental condition. Then hot tests were performed. High-density MoO₃ pellets were irradiated in the Kyoto University Reactor (KUR). Solvent extraction method with MEK was used to extract ^{99m}Tc from ⁹⁹Mo /^{99m}Tc solution. And quality tests for the solutions were performed.



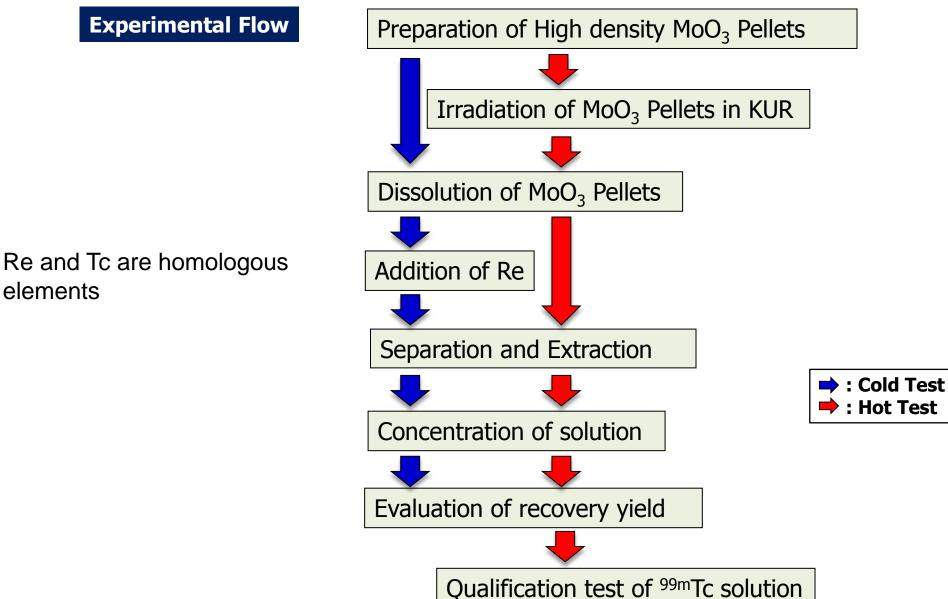
Background

Objectives

⁹⁹Mo domestic production by (n, γ) method using JMTR. ^{99m}Tc supply as a raw material of radiopharmaceutical

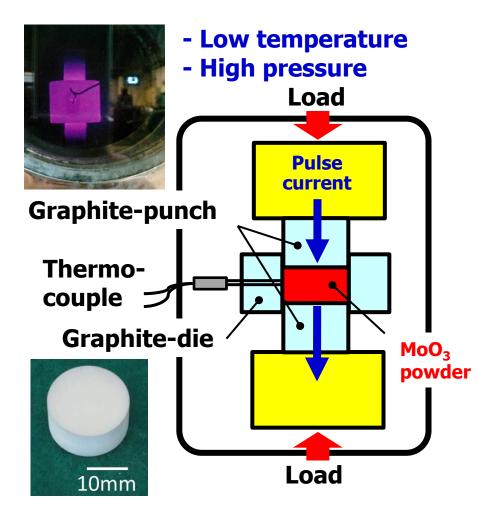
In order to make adaptable production, recovery yields and impurities of product should be.....

(i) **Recovery yields** are more than 80%.


(ii) The impurities of ⁹⁹Mo and MEK in product are below the limits of standard which we made based on other standards of pharmaceutical production.

> X Such as "Guidance on the manufacture of sterile pharmaceutical product by aseptic processing" and "Radiopharmaceutical Standard" of Japan.

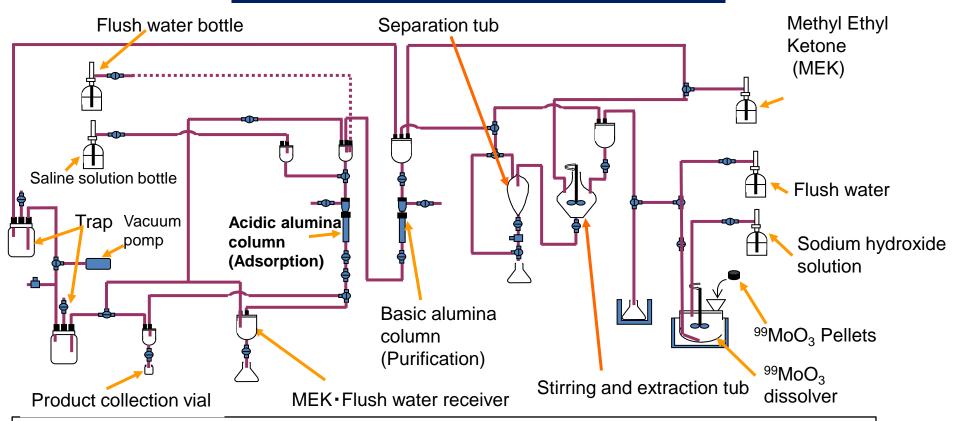
Flow of this experiments



Properties of High-density MoO₃ Pellet

The high density MoO₃ pellets were fabricated by the plasma sintering method.

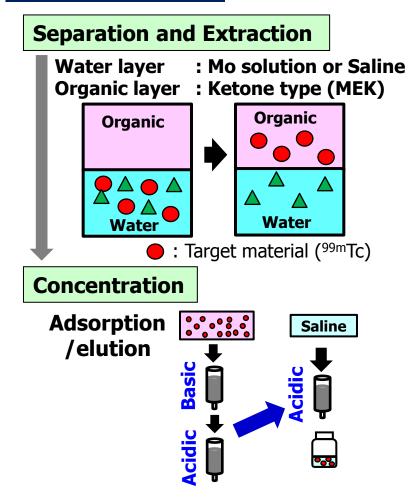
Production configuration


Sintering properties of MoO₃ pellet

Items	Values			
(1) Sintering conditions				
Temperature	530°C			
Pressure	66.8MPa			
Atomoshper	Air			
Oxidation	$\left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $			
treatment	Ozone gas ($80^{\circ}C \times 2h$)			
(2) Properties				
Dimension	ϕ 18 $ imes$ 10 mm			
Weight	11g			
Density	91~93% T.D.			
	Na:<5, K:<5, MgO<1,			
Impurities (ppm)	CaO<1, W:20, Fe:<1,			
	etc.			

⁹⁹Mo/^{99m}Tc separation-concentration device

⁹⁹Mo/^{99m}Tc separation-concentration device


- •99Mo Dissolver : MoO_3 Pellets are dissolved by NaOH solution.
- •Stirring and extraction tub: Methyl ethyl ketone (MEK) is added to the Mo Solution. Those are mixed and stirred. 99m Tc is extracted to MEK and MoO₃ remain in Mo solution by this solvent extraction.
- •Separation tub: Settled separation of Mo layer and MEK layer.
- •MEK•Flush water receiver : Receiver of waste water and waste MEK.
- Product collection vial: ^{99m}Tc-Saline is collected in this vial

Re was used as a substitute of ^{99m}Tc. The amount of Re used in the extraction test was equivalent to 12.5 TBq (340 Ci) of ^{99m}Tc.

Experimental Flow

Extraction test : Re, the homologous element, was used as a substitute of ^{99m}Tc

Flow of Hot Test

Experimental Flow

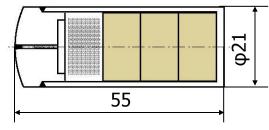
Irradiation

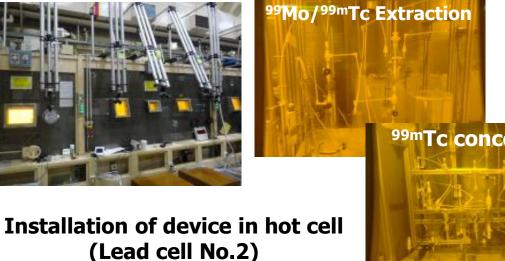
NEW //MUCR

Type A Package

⁹⁹Mo/^{99m}Tc Extraction/concentration (in JMTR Hot Lab.)

Inspection of ^{99m}Tc Solution (in FUJIFILM RI Pharma)


Preparation for test


MoO₃ pellets

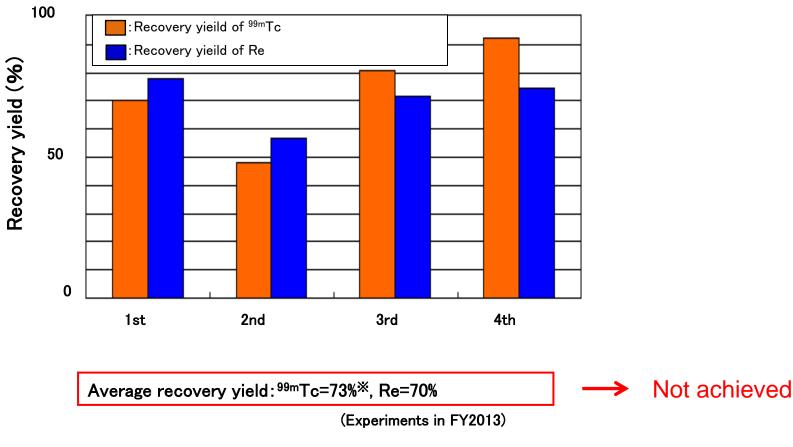
Al Container

Irradiation target

(~4h)

^{99m}Tc Solution

^{99m}Tc concentration



Irradiation conditions in KUR

Items	Values
Thermal power	1MW
Thermal	$1.8 imes 10^{17}$ /m ² /s
Fast flux	$8.8 imes 10^{16}$ /m ² /s
Irradiation Temp.	about 50°C
Irradiation Time	3h12min

Recovery rates of experiments in 2013.

Filing

height

40mm

Difference between former alumina column and current alumina column.

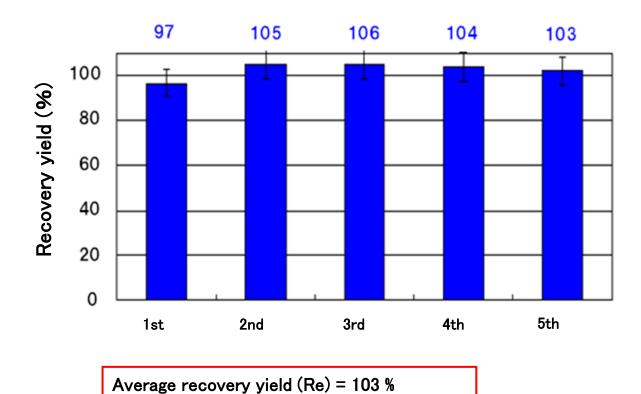
Filing

height 48mm

Inside diameter 16mm

Inside diameter 14mm

Flow rates and suction pressure

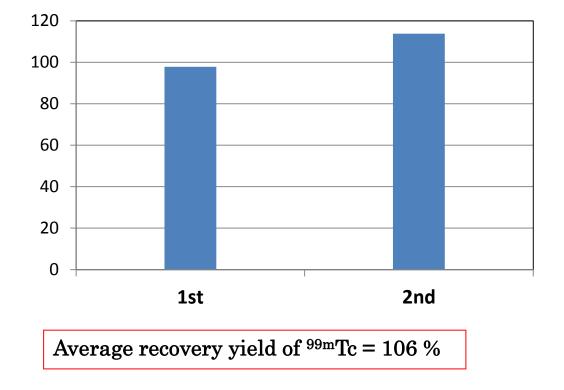

	Basic alumina Column (MEK)	Acidic alumina Column (MEK [adsorption])	Acidic alumina Column (Water [Rinsing])	Acidic alumina Column (Saline [Elution])
Flow rate of liquid	11.2±2.5 ml/min	9.4±2.3 ml/min	18.5±4.6 ml/min	4.0±0.2 ml∕min
Suction pressure	(0.01MPa)	(0.005MPa)	(0.03MPa)	(0.005MPa)

Optimization of Liquid flow conditions

NEW //MITH

Optimization of Liquid flow conditions

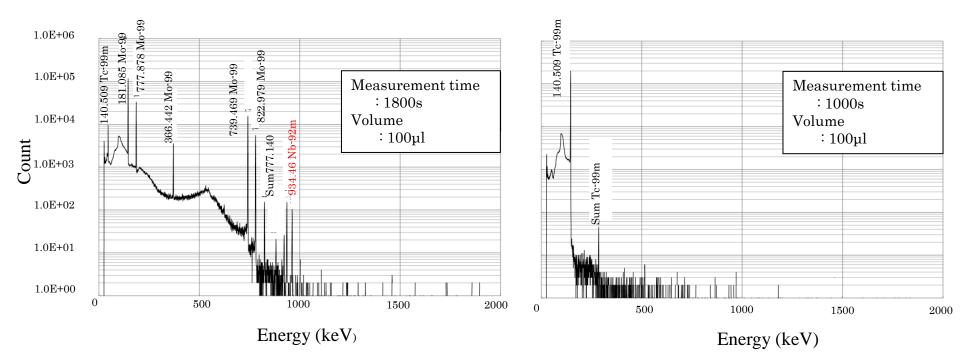
Recovery rate of this experiments enhanced to about 100% from 73% (in 2013).



- Amounts of 99mTc was evaluated by radio activity.
- The theoretical radioactivity of ^{99m}Tc was calculated by following equation

 $A_2 = 0.877 \times \left\{ \lambda_2 / (\lambda_2 - \lambda_1) \right\} A_{10} \times \left\{ \exp(-\lambda_1 t) - \exp(-\lambda_2 t) \right\}$

- A_{10} : Activity of ⁹⁹Mo (Activity of ^{99m}Tc = 0)
- λ_1 : Decay constant of ^{99}Mo
- λ_2 : Decay constant of ^{99m}Tc
- A₂ : Activity of ^{99m}Tc (Bq)


No.	Activities	Activities	Recovery	
	of ⁹⁹ Mo (Bq)	of ^{99m} Tc (bq)	yield (%)	
1	1.09×10^{9}	9. 71×10^8	97.8	
2	8. 53 $\times 10^{8}$	7.53 $\times 10^{8}$	113.8	

High recovery yield also confirmed by the optimum liquid flow conditions in the hot tests.

Gamma spectrum of ⁹⁹Mo solution

Natural Mo contain ⁹²Mo of 14.8% ⁹²Mo(n,p)^{92m}Nb in Reactor Gamma spectrum of ^{99m}Tc solution

^{92m}Nb did not move from aqueous layer to organic layer

	рН	Al (ppm)	Radionuclide Purity	MEK (ppm)	Radiochemical impurity	Osmotic pressure (mosm)	Endtoxine
This experiment	5. 51	_	Peak of ^{99m} Tc only	404	2.00%	286 293	Negative
standard	4. 5-7. 0	≦10	≦0.015 %	≦5000	≦5	270-300	Negative

Standard were set based on some of other guideline such as "Guidance on the manufacture of sterile pharmaceutical product by aseptic processing" from the Ministry of Health, Labour and Welfare of Japan and "Radiopharmaceutical Standard" of Japan

Average impurity of MEK : lower than that of standard by an order of magnitude.

(1) Inside diameter of alumina column was changed from 16mm to 14mm and flow rates of liquid in alumina columns were optimized. The recovery yields enhanced from 73% to about 100%. This shows that recovered yields of ^{99m}Tc as high as 80% at the shipping time was achieved.

(2)The impurities in ^{99m}Tc solution were evaluated and were efficiently low. And it is concluded that this method would be suitable for the radiopharmaceutical production.

In future, the solvent extraction demonstration tests will be carried out with high density MoO_3 pellets irradiated in JMTR.

This study was carried out for the "Research and Development of domestic 99 Mo production by (n, γ) method in JMTR" under the framework of Strategic Promotion Program for Basic Nuclear Research launched by the Ministry of Education, Culture, Sport, Science and Technology of Japan (MEXT).

Thank you for your attention!